[PR]

数学I・数学A

 大問ごとの出題に大きな変化はないが、第3問から第5問の選択問題で選択肢から答えを選ぶ問題が出題されなかった。

【難易度】昨年並み

【全体概観】

 昨年と同様、数学I分野の第1問は3問、第2問は2問の中問に分かれ、第2問[2]の「データの分析」では、箱ひげ図、ヒストグラム、散布図の読み取りを中心とした問題が出題された。第3問の「場合の数と確率」は、4年連続で確率のみの出題となった。第4問の「整数の性質」では、一次不定方程式の整数解と、それを利用した連続3整数の決定がテーマの問題が出題された。第5問の「図形の性質」では、チェバの定理などを用いる問題が出題されたが、三角比の値が与えられているところが目新しい。新たな傾向、形式の問題は出題されなかった。また、大問数は昨年までと変化はなく、全体の分量、難易度ともに大きな変化はない。

設問別分析

設問別分析 数学I・A

【第1問】 数と式・集合と命題・2次関数

[1](数と式)

 根号、絶対値を含む式の整理と、これを含む方程式の解を求める問題である。根号と絶対値のそれぞれの性質を正しく理解できているかが試される。絶対値を外す際に場合分けの条件を満たすか否か、確認することを忘れないようにしたい。

[2](集合と命題)

 二つの自然数の偶奇に基づく条件に関し、必要条件・十分条件の判定を行う問題である。比較的平易な出題であり、pの否定を正しく書き出しておけば難しくない。

[3](2次関数)

 文字の定数を含む方程式で表された2次関数のグラフに関する問題。(1)では頂点を求め、(2)では与えられた条件から定数a、bを決定し、そのときのグラフの平行移動を考える問題である。計算ミスにさえ注意すれば平易である。

【第2問】 図形と計量・データの分析

[1](図形と計量)

 三角形が与えられ、それぞれの角の三角比や辺の長さ、面積を求める問題。前半の計算の結果から、点同士の位置関係を正しく理解し、図示することが後半を解ききるポイント。

[2](データの分析)

 ソメイヨシノの開花日、モンシロチョウやツバメの初見日についての分析結果に関する問題。箱ひげ図やヒストグラム、散布図の基本的な見方を理解していることが大切である。また、後半は変数の変換に伴う平均値や標準偏差の変化に関する理解が求められる。

【第3問】 場合の数と確率(選択問題)

 最初にさいころを1回投げて出た目によって赤い袋か白い袋を選び、その中から球を取り出すときの確率の問題である。2回目以降は、最後に取り出された球の色による確率計算になる。結果が煩雑なので、丁寧に計算を行う必要がある。

【第4問】 整数の性質(選択問題)

 一次不定方程式の整数解を求める問題からスタートし、最終的には連続する三つの自然数の積が6762の倍数となるための条件を考える問題。誘導は丁寧だが、最後の設問につながる意図に気づかなければ解きにくいかもしれない。

【第5問】 図形の性質 (選択問題)

 三角形とその内接円に関する問題である。第5問としては珍しくsinやcosの値が与えられており、それにより面積計算などを行う。しかし、問題としては頻出タイプであり、図を丁寧に描いて考えることができれば標準的である。点Qが円と三角形の接点に一致することに気づきたい。

新高3生へのアドバイス

 センター試験の数学I・Aでは、その年の問題の難易度変化に関わらず高得点が求められると考えて準備しておく必要があります。数学I・Aは、高校数学の土台ともいうべき分野なので、センター試験においても基本の理解を問う出題が多くなっています。大切なのは、基本を早期に確実に理解し、問題演習を繰り返し、限られた時間内で正答を確実に導く力を作ることです。

 各分野ごとに学習していく上で重要なポイントは以下の通りです。

◆数と式、集合と命題

 絶対値記号を中の符号で場合分けをして外す、代入計算を式変形によって行う、複数の不等式をすべて満たす範囲を数直線を用いて考える、などといった基本動作を確実にできるようにしましょう。また、必要条件か十分条件かの判定は、集合の包含関係や数直線を用いて視覚的に捉えることが有効です。覚えるのではなく理解に努めることが大切で、一度理解してしまえば、確実に得点できる分野です。勘に頼ることなく、命題の真偽から考える習慣を普段からしっかりと身につけましょう。

◆2次関数

 グラフを描きイメージしながら解き進められるかがポイントです。2次関数のグラフが軸を中心として線対称であることを利用した最大・最小問題、2次関数のグラフと2次方程式・不等式の解の相互間の言い換えなどをグラフを描いて考える習慣を身につけましょう。

◆図形と計量

 正弦定理や余弦定理など、三角比の基本公式を身につけることが最も重要です。それに加えて、常に図形問題では自分で図を描いて考えることが基本です。なるべく大きく図を描き、解き進めていく中で分かった長さなどの情報を書き込んでいく習慣を身につけましょう。

◆データの分析

 多くの用語が出てくるので、まずはそれぞれの用語の定義を正しく覚えることが重要です。用語の定義を正確に覚えた上で、代表値などの値の計算、そして度数分布表や箱ひげ図、散布図などからデータの特徴を読み取る練習を重ねましょう。

◆場合の数と確率

 公式に頼るのではなく、樹形図などから数え上げの原理を理解することが極めて重要です。併せて他分野以上に状況を言い換える力も求められます。考え方を理解しながら学習しましょう。

◆整数の性質

 約数・倍数の考え方、ユークリッドの互除法、不定方程式の解、n進法の考え方を理解したうえで、論理的に解き進めていく力が必要になります。日頃の学習では、一つ一つの式変形の意味を明確にしながら解き進めることを繰り返しましょう。

◆図形の性質

 三角形や円の性質を図と合わせてきちんと理解しているかが重要です。図形と計量と同様、図を描いて等しい角や長さ、相似などを見抜くことができるように練習を重ねましょう。

 各分野を効率よく学習するには、いきなり入試レベルの問題に取り組むのではなく、教科書の例題、練習問題、節末問題、章末問題レベルへと、少しずつステップアップしていくのが一番の近道です。「計算を最後までやり抜く」、「図やグラフを描いて考える」といった基本的なことを地道に積み重ねることによって、確固たる実力を身につけましょう。また、解法の暗記に頼るのではなく、公式や解法の原理をきちんと理解してから先に進むような勉強を心がけましょう。物事を理解するとは、その道理や筋道がわかり、自ら考えることができるようになることです。理解して先に進むような勉強を繰り返すことで、受験だけでなく、将来社会に出てからも役立つ本当の力をつけることができます。

 東進では全国統一高校生テストを含めて年6回実施される「センター試験本番レベル模試」があります。センター試験の傾向や自分の現在の力を知り、さらに不得意分野、弱点を明確にしてセンター試験対策を早期に進めましょう。

新高2生へのアドバイス

 2021年度からはじまる大学入学共通テストの数学I・Aでは、従来のセンター試験からの解答形式の変更(マーク式→マーク+一部記述式)に伴い、試験時間は70分となります。授業風景や日常生活に関する対話、コンピューター画面上で図やグラフを動かすことを想定した長い問題文から必要な情報を読み取って解き進める力が要求されます。自分自身の情報を読み取るスピードを把握し、与えられた情報を速く正確に読み取って解き進める力を身につけていく必要があります。そのためにも、まずはその土台となる数学I・A、数学II・Bの基礎・基本を確実に理解することが重要です。

 数学I・Aのそれぞれの分野において、新高2生の今から身につけておくべきことは以下のとおりです。

◆数と式

 絶対値記号を中の符号で場合分けをして外す、代入計算を式変形によって行う、複数の不等式をすべて満たす範囲を数直線を用いて考える、などといった基本動作をまず身につけましょう。

◆集合と命題

 必要条件か十分条件かの判定は、集合の包含関係や数直線を用いて視覚的に捉えることが有効です。覚えるのではなく理解に努めることが大切で、一度理解してしまえば、確実に得点できる分野です。勘に頼ることなく、命題の真偽から考える習慣を普段からしっかりと身につけていきましょう。

◆2次関数

 この分野はグラフを描いて、イメージして解き進められるかどうかがポイントです。グラフを描いて考える習慣を身につけましょう。

◆図形と計量

 常に、図形問題は図を描いて考えることが基本です。なるべく大きく図を描き、解き進めていく中で分かった長さなどの情報を書き込んでいく習慣を身につけましょう。

◆データの分析

 まずは用語の定義を正確に覚えることが重要です。用語を覚えた上で、代表値などの値の計算、度数分布表や箱ひげ図、散布図などからデータの特徴を読み取る練習を重ねましょう。

◆場合の数と確率

 公式に頼るのではなく、樹形図などから数え上げの原理を理解することが極めて重要です。全てを書き上げようとする姿勢の中で、順列や組み合わせの考え方を身につけましょう。

◆整数の性質

 約数・倍数の考え方、ユークリッドの互除法、n進法の考え方をそれぞれ原理から理解することが重要です。それぞれの式変形が何を意味するか、丁寧に確認しながら原理から理解しましょう。

◆図形の性質

 三角形や円の性質を図と合わせて理解しましょう。図形と計量と同様、図を描いて解き進めていく中で等しい角や長さ、あるいは相似などを見抜く練習を重ねることが重要です。

 入試レベルの問題に取り組むためにまず今すべきことは、基本を確実に身につけることです。教科書の例題、練習問題、節末問題、章末問題レベルへと、少しずつステップアップして学習していくことが、実力を高める一番の近道です。「計算を最後までやり抜く」、「図やグラフを描いて考える」といった基本的なことを地道に積み重ねることによって、確固たる力を養成しましょう。また、解法の暗記に頼るのではなく、公式や解法の原理をきちんと理解してから先に進むような勉強を心がけましょう。物事を理解するとは、その道理や筋道がわかり、自ら考え使いこなすことができるようになることです。理解して先に進むような勉強を繰り返すことで、受験だけでなく、将来社会に出てからも役立つ本当の力をつけることができます。

 東進では高2生向けに大学入学共通テストに対応した「全国統一高校生テスト(高2生部門)」をはじめ、「高校レベル記述模試」「大学合格基礎力判定テスト」などを用意しています。自分の現在の力を知り、さらに不得意分野、弱点を明確にして本格的な大学受験対策に向けて大いに役立ててください。そのためにも、模試は毎回欠かさず受験するようにしましょう。

 なお、「大学入学共通テスト」には新しい形式が含まれますが、これまでのセンター試験と同じく正解選択肢を早く正確に選ぶ訓練は「大学入学共通テスト」でも不可欠です。自信のある人は「全国統一高校生テスト(高2部門)」に加えて、偶数月に実施される、受験学年と同じ「センター試験本番レベル模試」も受験しましょう。(東進ハイスクール提供)

こんなニュースも